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LETTER TO THE EQITOR 

Universal and non-universal short-distance expansions in the 
strong, - weak and intermediate fluctuation regimes of 
CritiwI wetting 

A 0 Parry 
H H Wlllr P h w u  Laboratory. Unrvemty of BnstoI. Bristol BS8 ITL, UK 

Received 4 Februaw 1991 

Abshact. We Study the scaling pnopenies of the density profile p ( i )  of B fluid near a wall 
undergoing a mtical wetting transition in the strong-fluduation and m the weak-Huctuation 
scaling regintes. A mt~cd  exponent 0 describing the short-distance algebraic decay of the 
denilty profile (for distances : normal to the wall much less than the perpendrculzr 
correlationlength ~~)iscalculatedexpfieitlyindimenrion d =Zu~inganeff~etlveintr:facial 
Hamiltonian model. The exponent 8 1s found to be mnlversal in the strong-fluctuatien 
regime(O=l) andmthewerk-fluduatronregime(8=3) Ineontrasttotheothe:rtandard 
mtieal exponents 8 is non-univelsal at the weak-fluetuationlmean-Seld borderline We 
discuss the ongm a i  the universahty of e $0 the different Hurmanon regtmer and denvc 
erpressions for e, valid for general d, terms of known critical exponents 

... --:-I- ,h_. ,.r.n., LA-.-'- .^__ "e.--> .. ̂^ ,,.LA -... L..L^^ &L^. 
,I, a l r G e l I l  aruuc- ( ra l ly  (177'1, I1CLZdlls.l 1G'CrIC" L" .a?, I )  LllC llU,,,"l ,ma atguc-u Llinl, 

for systems with short-ranged forces and bulk dimension d < 3, the density profile p ( z )  
ofa thick liquid film adsorbed at a planar wall-vapour interface (bulk chemical potential 
pspiLaa,) is a scaling function of the variabies z i ' i  and h f " .  Here z measures the 
distance normal io the wall whilst i= (Tw- T) /Tw and ha(p-psat) are the relevant 
scaling fields for the critical wettiilg iraansition which takes place at temperatare T = T,, 
h = 0-. The critical exponent U, characterizes the growth of the perpendicniar (to the 
wall) correlation length 5, - ?-'L and A is the gap exponent (see below). In the present 
ietter we extend the scaling theory to the weak-fluctuation regime of critical wetting. 
That is, we argue that the density pmfife retains a scaling form even in the presence 
of relevant long-range (algebraically decaying) intermolecullr forces. To test the scaling 
theory developed herein we have analysed the criticai wetting transition in d = 2  using 
an effective interfacial Hamiltonian model. In addition to confirming the scaling 
hypofh~gis this ana!ysis demnnmates that the density profile p!z!, at short distances 

ti, may exhibit universal or non-universal algebraic behaviour depending upon 
the type of fluctuation regime that the critical wetting transition is described by. To 
proceed we recall some details of the critical wetting transition. 

If the equilibrium thickness f., of a liquid film adsorbed at a wall-gas interface 
diverges continuously as the temperature T approaches some wetting temperature T, 
at chemical potential p = p i ,  then the system is said to undergo a critical wetting 
transition. Exceiieni reviews of weiiing iraosiiions may be foiiiid iii Ei&& {:9SS) 
and Schick (1990). Associated with the growth of the film thickness teq- f e s  is the 
divergence of correlation lengths perpendicular (ti- r " ~ )  and parallel (51, - ;-"Ii) to 
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the substrate. Such divergences are due to the capillary-wave-like fluctuations of the 
depinning liquid-vapour interface. The approach 10 critical wetting 1s also associated 
with the vanishing of a singular term Z'"- i2-", in the excess grand potential pe rmi t  
area Q'"fA. In addition to a relevant temperature variable i the deviation of the 
chemical potential from saturation is also a relevant scaling field Thus, we write 
(Nakanishi and Fisher 1982) 

~ ( ' 1 ~  iA-%w(hj-A) ( 1 )  

where A is a gap exponent (A = 2 -as + &) and W is the scaling function Varying the 
temperature Tis equivalent (for the critical wetting transition) to varying t2e strength 
E of the attractive part of the wall-fluid extemal potential. GeneraKy speaking such 
transitions are only found in systems where the attractive one-body wall-fluid interac- 
tion V(z)--sz-"'(z-tm) has the same range as the attractive part of the two-body 
fluid-fluid interaction, I.e. +(r,2)ar -r:id+'"'(ri2- 00). In addition, outsideofthestrong- 
fluctuation regime (SFR), the values of the critical exponents for cr'tical wetting show 
a remarkable sensitivity to the range m ofthe forces At mean-field level the equilibrium 
film thickness in zero bulk field follows from minimuing the effective interfacial binding 
potential (Lipowsky and Fisher 1987) 

u(I )=-u / - '+w/ - '  w > 0, h = 0. (3 
In the presence of a bulk field there is an additional term lhl/ in (2) .  For critical wetting 
transitions s = r t  1 = m. The fi4d U vanishes'at the (mean-E&l) wetting temparature: 
u a  i. Other critical exponents follow from the identifications U(/,,)OC &' and, U(l.,)a 
Z'". In addition, for d < 3 ,  the capillary-wave relation U,= (3 - d ) q / 2  is generally 
valid. For d > 3 tL is finite. In fact the whole mean-field regime is characterized by 
the length scale inequality I>> cL( i - 0 ) .  The meandeld descriptior. is valid provided 
d 3 d,  = (3s  + 2 ) / ( s  +2) corresponding to the upper critical dimension for critical 
wetting. Below the uvper critical dimension fluctuation effects (due to the capillary- 
wave-like modes of the iiquid-vapour interface) alter the critical behaviour. An immedi- 
ate and important consequence of the hyperscaling hypothesis E'''- 57'"'' (presumed 
valid Vd d , )  is p. = U ,  (Kroll et ai 1985). That is, for d s d , ,  the perpendicular 
corrdation length &, measuring the liquid-va$our interfacial roughness, is of the 
same order as the equilibrium film thickness les. Thus d < d ,  corresponds to the 
fluctuation regime of critical wetting. The rich structure of this fluctuation regime is 
elegantly described by rhe heuristic scaling.p~ctun of Lipowsky and Fisher (1987). 
These authors argued that for d < 3  capillary-wave fluctuations (not accounted for in 
mean-field calculations) give rise to an effective entropic repulsion term in (2) UFL- /-' 
with T = 2(d - 1)/(3 - d ) .  The mean-field regime d > d,  then follows from the require- 
ment T> s, i.e. fluctuation effects are a negligible higher-order contribution. The 
fluctuation regime d e  d ,  is then seen to comprise (a) a weai--fluctuation regime (WFR) 
where r < F < s  or equivalently d 2 < d < d ,  with d2=(3r+2) / t r+2) ,  ( 6 )  a strong 
fluctuation regime (SFR) for rl < d. where CJFL is larger than either term in (2).  In the 
wFR the attractive part appearing in (2) is a relevant long-r-.bged perturbation (to the 
critical wetting fixed point potential) and hence the phase transition occurs at the 
mean-field boundary U =O. The repulsive part in (2) is irrelevant in the WFR. The 
xitical exponents in the WFR may be-determined analytically, for arbitrary 8, using 
the above scaling P~ --intents. Alter~dively they may be derived fram perturbation 
theory (Kroll et a. 35)  or by renormalization group analysis of an interfacial 
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Hamiltonian (Lipowsky and Fisher 1087) 

1 p =- 
r - r  

and recall p , = u L = f ( 3 - d ) u i i  and ( 2 - a , ) = f d - l ) v i i .  This has been confirmed in 
d = 2  in transfer-matrix studies of effective interfacial Hamiltonians (Kroll and 
Lipowsky 1983). The critical exponents in the WFR satisfy the exponent equality 
1 - U ,  = p'r. Together with the hyperscaling and capillary-wave relation this determines 
uniquely the critical exponents. 

In the SFR critical exponents are uniire?sal (i.e. r, s independent since both terms 
in ( 2 )  constitute irrelevant operatcrs) and the critical wetting transition occurs at II > 0. 
The exponents for such transitions have been determined analytically for d = 2  from 
exactiy solved models (Abraham 1980) and effective meerfacial Hamiltonians (see e.g. 
Lipowsky 1988) and numerically far 2 s  2 < 3 using a nonlinear renormalization group 
analysir (Lipowsky and Fisher 1087. David and Leibler 1990). In d = 2, U. = 0, p. = 1 
and u i i = 2  For all d < 3  the SFR describes the cntical behaviour of systems with 
short-ranged forces. 

In f it was irgoed that for d < d ,  the 'contact' condition l-EL implies that all 
distances to the wall appearing in thermodynamic response functions may be measured 
in terms of the single scaled variable ziO8. More precisely, the density profile p ( z )  was 
assumed to have a singuiar, scaiing contribution 

p?Gg= p ,  - (p, -p, )9(z is* ,  hi-'). (1) 

Here p ,  and p ,  deno?? the coexisting liquid and gas number densitiid whilst S ( x , y )  
is a scaling function normalized surh that E(m, y )  = 1. For systems with short-ranged 
forces exact statistical mechanical sum rule results (Henderson 1986, Evans and Parry 
1989) determin- the exponent P of the short-distance expansion (SDE), defined quite 
generally Wd < d ,  by 

S(x, 0 )  - x" x + o  (4) 

ir. terms of standard critical exponents: B = (1 -a,)/&. That IS, for systems with 
short-ranged forces, the profile should decay algebraically like 

p(z)-pi-constant x i '+"~~''-"~''~ .+.. h=O 

for distances O K  z c  i-3.. This was verified in I for d = 2  by explicit analysis for an 
effective interfacial Hamiltonian. Upon invoking the universality hypothesis it follows 
that the resuit 0 = (1 - U , ) / &  is expected to be valid for all systems where long-ranged 
forces are irrelevant, i.e. it should be valid for systems belonging to the SFR. We argue 
independently for this below. Note that since we expect the scaling function E(x .y )  
appearing in ( 3 )  to behave as reY(y )  as x+O (at least for y small) rhe exponent 6 
also determines the algebraic behaviour of the zero field derivative of p i z j  WRT h, i.e. 
the local susceptibility ,y(zf. 

In the present letter we analyse the density scaling hypothesis (3)  and SDE (4) in 
the WFR. In the presence of an attractive one-body force Vat,= - & z - ~  (z > a, a micro- 
scopic distance from the wall) the Henderson (1986) sum rule result for the variation 
of the excess grand potential with E reads 
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Hereafter we work in the limit h = O  only. From (3) it follows from matching the 
singular contributions to either side of ( 5 )  that 

m 

I jP.'Q(&). (6)  

&e .WIR sii,e i-u,=B& (kj Q;w; is 
singular as w - 0  io the SFR. In fact, it is straightforward to show that the singular 
behaviour of Q in the ~ F R  arises from the short-distance behaviour of the integrand 
in (6). From the definition (4) it then follows that 0 = (1  -as ) /p ,  and hence is universal 
in the SFR provided that the profile has the assumed scaling form 

It  should be apparent that the present sum rule analysis does not determine 0 in 
the WFR. Instead we are left with the weak inequality 0 > r which follows from the 
c o d t i o n  that Q(0) is Enite. To continue we calculate tl exp'icitly for a given model 
belonging to the WFR. 

In two dimensions the wfR for the potential (2) (with s = r +  I )  occurs for 1 < r c; 2. 
For r in this range we can ignore the repulsive term in (2) and consider the unbinding 
(critical wetting) transition that occurs, for h = O  in the limit U -to+, with the potential 

From (@ we GonCiude~ is f,&e 

In order to model the effect of fluctuations we use the effective interfacial Hamil- 
tonian 

where U is the liquid-gas surface tension and I (x!  denotes the instantaneous height 
of the interface at position x along the wall. The application of such Hamiltonians to 
wetting transitions is well documented, we refer to the reader to reviews (e.g. Dietnch 
1988). As pointed out by many authors determiningthe equilibrium statisticd mechanics 
of the above Hamiltonian is equivalent to determining ths eigenvalues E, and eigenfunc- 
tions 4, of the one-dimensional Schrodinger equation 

where p is the inverse temperature p = (k,T)-' .  In particular the ground state energy 
EO may be identified with Z"'. The density profile may be constructed in the usual 
solid-on-solid way (see e.g. Weeks 1977) by assuming that the graph /(x) separates a 
high d w i t y  liquid from a !ow density gzs. we .>vr;.re 

P ( z ) =  P I - ( P I - P J  4t(z') dL'. (10) 1: 
Consider the solution of (8) for the potential (7) with l < r < 2 .  Using the critical 
exponent results quoted earlier it follows immediately that 4o is a scaling function of 
lip* and hi-' provided Eo(=ZE"') has the scaling form (1). Thus the scaling of the 
density profile (equation (3)) follows from the scaling of the free energy. In zero bulk 
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field h = 0 the SDE exponent 8 may he readily found from noting that &, has the 
asymptotic solution 

&( i )=  i ( i  i o (  i*-')+. . ) h=O,i-tO 

1. Thus we find that the profile has the short-distance hehavioui where f.. i"" 

p ( z )  = p ,  -constantx ( ~ f ' / ( * - ' ' ) ~ + .  . . h =0, zf"'*- ')+O (11) 

corresponding to 0 = 3. Thus in d = 2 the SDE exponent 8 is universal ( r  independent) 
in the WFR. 

For r = 2 corresponding to the intermediate regime between the WFR and SFR it 
follows immediately from the analysis of Kroll and Lipowsky (1983) that 8 = 2 (ignoring 
logarithmic corrections). Howeber a more general analysis of this intermediate fluctu- 
ation regime (Lipowsky and Nieuwenhuizen 1988) demonstrates that the critical 

properties of U: / )  (i.e. I <  1) which is set equal to infinity in (6).  Further work is 
required to investigate the SDE exponent 8 for this more general case. 

For r = 1 corresponding to the intermediate regime between the WFR and mean-field 
regime we uncover some unexpected richness. Consider the unbinding transition from 
the potential (3) with r = 1, s = 2. Note that now we must include the repulsive term 
w : P  in the binding potential since this represents a marginal operator (Lipowsky and 
Fisher 1987). The critical exponents for the transition are believed to he vL =ps = 1, 
vi, = 2, A = 3 and or, = 0, i.e. they are not changed from their mean-field values. Using 
these results it folluws that +o (and hence p ( z ) )  is a scaling function of ItBz and h i P  
provided that 2"' has the standard scaling form (I). Moreover, for h = O  equation (9) 
has the form of Whittakers equation the eigenfuoctions of which are well known. We 
find 

LA."..: -..- -c..,.*a-*:",- +L̂ . A-,," ..... :.z. ---1 - - ~  -.-.-:.:..- .,. .be "L-.. *I""_ 
" ~ , I P " I " " I  "1 p " L c " L L a " "  U,',, "-*ay 11,111 C"p""C.l, r -4 aLlr DC'.D1,1"~ L" ,,,r """.,.,'Z"1~,C 

Consequently the SDE exponent 0 is non-universal for w # 0 

0=2+.hTiL3 (12) 

This result is intriguing since the standard critical exponents are universal ( w  indepen- 
dent). Similar remarks apply to the wFR/mean-field intermediate fluctuation regime 
.-. for comnlete -.... .___ wetting ~ (see ,... sect.ion .... ~~~~ 1V.F of ~~ Lipowsky ~~ 1985). 

To conclude, we argue that the SDE exponent 8 is universal in the WFR for arbitrary 
dimension. Consider the approach to a critical wetting transition belonging to the WFR 

but from off coexistence ( h - 0 )  and exactly at the wetting temperature. The only 
relevant operator in the binding potential (2) is the term aclhll since U = O  and w is an 
irrelevant scaling field. The critical behaviour of the system is therefore identical to 
that observed at fluctuation-dominated complete wetting transitions (Lipowsky 1985) 
which have been studied m I. It follows that the local susceptibility near the wall 
remains finite at the transition. This local condition on the susceptibility can then be 
used to determine the SDE of the susceptibility and density profile in the WFR as 
described in I. We find 

in agreement with our expiicit result 0 = 3 in d = 2. The exponent is therefore universal 
in the WFR for arbitrary dimension. 
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