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LETTER TO THE EDITOR

Universal and non-universal short-distance expansions in the
strong, weak and intermediate fluctuation regimes of
critical wetting

A O Pairy
H H Wills Physics Laboratory, University of Bostol, Brstol BS8 ITL, UK

Recerved 4 February 1991

Abstract. We study the scabng properties of the density profile p(z} of & Ruid near a wall
undergoing a critical wetting transition in the strong-fivctuation and 1n the weak-fluctuation
scaling reginies. A cnitical exponent ¢ describing the short-distance algebraic decay of the
density profile (for distances z normal to the wall much less than the perpendicular
correlation length £, ) 15 caleulated exphiaitly in dimension d =2 using an effective inte facial
Hamltomian model. The exponent & 15 found to be universal in the strong-fluciuation
regime {f = 1) and n the weak-fluctuation regime {& = 3) In contrast to the other standard
critical exponents ¢ i non-universal at the wezk-fluctuation/mean-field borderline We
discuss the origmn of the umversality of @ 1a the different fluctuation regimes and dernive
expressions for 8, vald for general d, in terms of known critical exponents

| hereafier referred to as 1) the author has aroued that
In & Tecent article \rauy Uv:ﬂ) hereafter referred to as 1) the author has argued that,

for systems with short-ranged forces and bulk dimension 4 < 3, the density profile p(z)
of a thick liquid film adsorbed at a planar wail—vapour interface ( bulk chemical potential
w=p.,) is a scaling function of the variables zi*+ and hf ®. Here z measures the
distance normal to the wall whilst =(T,— T)/T,, and ho (u — u.,) are the relevant
scaling fields for the critical wetting transition which takes place at temperajure T=1T,,,
h =07 The critical exponent », characterizes the growth of the perpendicuiar (to the
wall) correlation length &, ~ §*+ and A is the gap exponent (see below). In the present
tetter we extend the scaling theory to the weak-fluctuation regime of critical wetting,
That is, we argue that the density profife retains a scaling form even in the presence
of relevant long-range (algebraically decaying) intermolecular forces. To test the scaling
theory developed herein we have analysed the critical wetting transition in 4 =2 using
an effective interfacial Hamiltonian model. In addition fo confirming the scaling
hvnothesis this analvsis demaonstrates that the density profile p(z), at short distances
z« £, , may exhibit universal or non-universal algebraic behaviour depending upon
the type of fluctuation regime that the critical wetting transition is descrlbed by. To
proceed we recall some details of the critical wetting transition.

If the equilibrium thickness I, of a liquid film adsorbed at a wall-gas interface
diverges continuously as the temperature T approaches some wetting temperature T,
at chemical potential g = u, then the system is said to undergo a critical wetting
transition. Excellent reviews of wetting transitions may be found in Dietrich (1988)
and Schick (1990). Associated with the growth of the film thicksiess Lo~ P is the
divergence of correlation lengths perpendicular (¢, ~ 7~*+) and parallel (£~ "} to
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the substrate. Such divergences are due to the capillary-wave-like fluctuations of the
depinning lquid-vapour interface. The approach to critical wetting 15 also associated
with the vanishing of a singular term £’ ~ 7>~ in the excess grand potential per unit
area '/ A. In addition to a relevant temperature variable 7 the deviation of the
chemical potential from saturation is also a relevant scaling field Thus, we write
{Nakanishi and Fisher 1982)

01 P W) (1)

where A is a gap exponent (A=2—a,+ $,) and W is the scaling function Varying the
temperatere T is equivalent (for the critical wetting transition} to varying tie strength
£ of the attractive part of the wall-fluid external potential. Generally speaking such
transitions are only found in systems where the attractive one-body wall-fluid interac-
tion V(z)~ ~£z ™{z-»0) has the same range as the attractive part of the two-body
fluid-fluid interaction, r.e. $Lr:) o —r 3?7 (r,,-> c0), In addition, outside of the strong-
fluctuation regime (srFr}, the values of the critical exponents for critical wetting show
a remarkable sensitivity to the range =1 of the forces At mean-field level the equilibrium
film thickness in zero bulk field follows from munimizing the effective interfacial binding
potential (Lipowsky and Fisher 1987}

Ut =—~ul""+wl™ w>0, h=0. {2)

In the presence of a bulk field there is an additional term [h|{ in (2). For critical wetting
transitions s = r+1 = m. The field u vanishes at the {(mean-ficld) wetting temperature:
u < {. Other critical exponents follow from the ideniifications U”(f ) oc & f and U{I jcc
3. In addition, for d <3, the capillary-wave relation », = (3 —d)»)/2 is generally
. valid. For d >3 £, is finite. In fact the whole mean-fieid regime is characterized by
the length scale inequality I» £ (7 -0). The mean-ficld descriptior. is valid provided
d=d;=(3s+2)/{s+2) correspanding to the upper critical dimension for critical
wetting. Below the upper critical dimension fluctuation efiects (due to the capiliary-
wave-like modes of the liquid-vapour interface) alter the critical behaviour, Animmedi-
ate and important consequence of the hyperscaling hypothesis '~ £, ™" (presumed
valid Vd=4d,) is 8, =v, (Kroll er af 1985). That is, for d<d,, the perpendicular
correlation length #,, measuring the liquid-vagour interfacial roughness, is of the
same order as the equilibfium fitm thickness I,. Thus & <d, corresponds to the
fluctuation regime of critical wetting. The rich structure of this fluctuation regime is
elegantly described by the heuristic scaling pacture of Lipowsky and Fisher {(1987).
These authors argued that for d <3 capillary-wave finctuations (not accounted for in
mean-field calculations) give rise to an effective entropic repulsion term in (2) Ug ~ 177
with =2(d —1)/(3 —d). The mean-field regime 4 > d, then follows from the require-
ment 7> 5, i.e. fluctvation effects are a negligible higher-order contribution. The
fluctuation regime d < 4, is then seen to comprise (a) a weal-fluctuation regime (WFR)
where r<7<j5 or equivalently d<d <d, with d,=(3r+2)/tr+2), (b) a strong-
fluctuation regime (sFr) for & < d, where Uy, is larger than either term in (2). In the
WFR the attractive part appearing in (2) is a relevant long-r'fnged perturbation (to the
critical werting fixed poimt potential) and hence the phase trassition occurs at the
mgan-ﬁeld boundary u=0. The repulsive pari in (2) is irrelevant in the wrr. The
critical exponents in the wrR may be-determined analytically, for arbitrary d, using
the above scaling » --iments. Alteraatively they may be derived from perturbation
theory (Kroll ef a. 35) or by renormalization group analysis of an interfacial
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Hamultoman (Lipowsky and Fisher 1987)

1
Bc=_“'“

T—r
and recall B, =»,=33-d)v; and (2—a,)=(d ~1)z). This kas been confirmed in
d =2 in transfer-matrix studies of effective interfacial Hamiltonians (Kroll and
Lipowsky 1983). The critical exponents in the wrr satisfy the exponent equality
1 —a, = B,r. Together with the hyperscaling and capillary-wave relation this determines
umquely the critical exponents.

In the sFr critical exponents are universal {1.e. r, 5 independent since both terms
in (2) constitute irrelevant operators) and the critical wetting transition occurs at 1> 0.
The exponents for such transitions have been determined analytically for d =2 from
exactly solved models { Abraham 1980) and effective mierfacial Hamiltonians (see e.g.
Lipowsky 1988} and numerically for 2= 4 < 3 using a nonlinear renormalization group
analysis (Lipowsky and Fisher 1¢87, David and Leibler 1990). In d =2, a, =0, 8, =1
and vy=2 For all d<3 the sFr describes the cntical behaviour of systems with
short-ranged forces.

In I it was argued that for d < d, the ‘contact’ condition I~ £, implies that all
distances to the wall appearing in thermodynamic response functions may be measured
in terms of the single scaled variable 2#%. More precisely, the density profile p(z) was
assumed to have a singular, scaling contribution

Pt = py—(py~ p)B(2i, AP ™). (3

Here p, and p, denote the coexisting liguid and gas number densitics whilst Z(x, y)
is a scaling function normalized suckh chat E(co, y} = 1. For systems with short-ranged
forces exact statistical mechanicai sum rule results (Henderson 1986, Evans and Parry
1989) determin~ the exponent & of the short-distance expansion (spE)}, defined quite
generally Yd < d, by

H(x, 0)~x* x-=>0 (4)

i terms of standard critical exponents: 8 =(1—u.)/B,. That 15, for systems with
short-ranged forces, the profile should decay algebraically like

p(z)~ p,—constantx '~ %284 h=0

for distances 0« z« "%, This was verified in I for d =2 by explicit analysis for an
effective interfacial Hamiltonian. Upon invoking the universality hypothesis it follows
that the resuit 8 = (1 — &, )/ 8, is expected to be valid for ail systems where long-ranged
forces are irrelevant, 1., it should be valid for systems belonging to the sFr. We argue
independently for this below. Note that since we expect the scaling function Z(x, y)
appearing in (3) to behave as x°Y{y) as x >0 (at least for y small) the exponent ¢
also determines the algebraic behaviour of the zero field derivative of p(z) wrT b, i.e.
the local susceptibility y(z}.

In the present letter we analyse the density scaling hypothesis (3} and spk (4) in
the wrr. In the presence of an attractive one-body force V,,=—~gz™" (2> q, a micro-
scopic distance from the wall) the Henderson (1986) sum rule result for the variation
of the excess grand potential with £ reads

neadsi s oa

ol /A

Il ]
= — £)z™™ 5
e Ja dzp(2)z (5)
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Hereafter we work in the linit =0 only. From (3) it foliows from matching the
singular contributions to either side of {3) that

o

7'~ = constant x {*" -{ dx E(x,0)x™™

afPs

= P27 Q(al?). {(6)

From (6) we conclude: (a) Q(0} is finite in the wer since 1—a, = 81, (b} Qu} is
singular as w—0 ir the sFr. In fact, it is straightforward to show that the singular
behaviour of Q in the SFR arises from the short-distance behavigur of the integrand
in {6). From the definition (4) it then follows that & = (1 —«,)/ B, and hence is universal
1n the ser provided that the profile has the assumed scaling form

1t should be apparent that the present sum rule analysis does not determine 8 in
the wrr. Instead we are left with the weak inequality @ > r which follows from the
condition that Q(Q) is finite. To continue we calculate @ explicitly for a given model
belonging to the wrr.

In two dimensions the weg for the potential {2) (with s=r+1) occurs for 1 <r<<2.
For r in this range we can ignore the repulsive term in (2} and consider the unbinding
{critical wetting) transition that occurs, for £ =0 in the limit u - 0", with the potential

[—ul " ) I>1

B
Y {eo I<1.

7}
il }

L

In order to model the effect of fluctuations we use the effective interfacial Hamil-

tonian
+ap o dl 2
H.= J;m dx [5 (a) + U(l(x))] (8)

where ¢ is the liquid-gas surface tension and K{x} denotes the instantaneous height
of the interface at position x along the wall. The application of such Hamiltonians to
wetting transitions 1s well documented, we refer to the reader to reviews (e.g. Dietrich
1988). As pointed out by many authors determining the equilibrium statisticz] mechanics
of the above Hamiltonian 1s equivalent to determining th- eigenvalues E, and eigenfunc-
tions ¢, of the one-dimensional Schrodinger equation

1 ¢l
e ———+ U(N (= E,(I
e air YD =Es D) ©)
where 8 is the inverse temperature 8 = (ks 7). In particular the ground state energy
E, may be identified with 2. The density profite may be constructed in the usual
solid-on-solid way (see e.g. Weeks 1977) by assuming that the graph I(x) separafes a

high dengit}r lianid from a low density gas, Thus we write

23 LTl Ragieass AR 4 10 Lty LS L) v 3R

p(2)=p—(p—py) L Pz ds. {10)

Consider the solution of (8) for the potential {7) with 1<r<2. Using the critical
exponent results quoted earlier it follows immediately that ¢, is a scaling function of
1i% and hi™* provided E,(=3") has the scaling form (1). Thus the scaling of the
density profile (equation (3)) follows from the scaling of the free energy. In zero bulk
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field £ =0 the spe exponent # may be readily found from noting that ¢, has the
asymptotic selution

Pk Doc T +O(F")+. ) h=0,7-0
where 7= {"/®""[ Thus we find that the profile has the short-distance behaviour
p(z) = p,—constant x (zf"/? 3+, h=g, zfY? 50 (11)

corresponding to 8 = 3. Thus in d =2 the spE exponent 8 is universal (r independent)
in the WFR.

For r=2 corresponding to the intermediate regime between the wFr and sFr it
follows immediately from the analysis of Kroll and Lipowsky (1983) that 8 =2 {ignoring
logarithmic corrections). However a more general analysis of this intermediate fluctu-
ation regime (Lipowsky and Nieuwenhuizen 1988) demonstrates that the critical

Tnlb . tamtinle that A Py Y - ] marait tm tha chowd =~
behaviour of pﬁleuuals trdl guday wiln expﬁucﬂt r=2 are seasitive to the short- range

properties of U{I) (i.e. 1 <1} which is set equal to infinity in (6). Further work is
required to investigate the spE exponent @ for this more general case.

For r =1 corresponding to the intermediate regime between the wrr and mean-field
regime we uncover some unexpected richness. Consider the unbinding transition from
the potential (3) with r=1, s=2. Note that now we must include the repulsive term
wi™* in the binding potential since this represents a2 marginal operator (Lipowsky and
Fisher 1987). The critical exponents for the transition are believed to be v, =5, =1,
v;=2,A=3 and @, =0, i.c. they are not changed from their mean-fieid values. Using
these results it follows that ¢, (and hence p(z)) is a scaling function of #t* and hi
provided that £° has the standard scaling form (1}. Moreover, for h =0 equation (%)
has the form of Whittakers equation the eigenfunctions of which are well known. We
find

v n FO+V1+8weB?)/2 [ A
ol B ) LC

——y

Y
. 1 UL

Conseguently the sDE exponent 8 is non-universal for w# Q.
0=2+Vi+8woB" (12)

This result is intriguing since the standard critical exponents are universal (w indepen-
dent). Similar remarks apply to the wrr/mean-field intermediate fluctuation regime
for complete wetting (see section 1V.F of Lipowsky 1985).

To conclude, we argue that the spE exponent & is universal in the weR for arbitrary
dimension. Consider the approach to a critical wetting transition belonging to the wrr
but from off coexistence (k->0) and exactly at the wetting temperature. The only
relevant operator in the binding potential (2) is the term oc|h|l since v =0 and w is an
irrelevant scaling field. The critical behaviour of the system is therefore identical to
that observed at fluctuation-dominated complete wetting transitions (Lipowsky 1985)
which have been studied m I. It follows that the local susceptibility near the wall
remains finite at the transition. This local condition on the susceptibility can then be
used to determine the spe of the susceptibility and density profile in the wrr as
described in I. We find

_(a‘+1)
EEY)

in agreement with our expiicit result 8 =3 in ¢ = 2. The exponent is therefore universal
in the wrr for arbitrary dimension.

WFR (13}
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